As of 26-07-2013

Venturi nozzles are used in all kind of applications where pressure loss – and therefore energy loss – has to be avoided.

- For flow-rate measurement in aggressive and nonaggressive gaseous and liquid media and steam.
- Two different designs available

Technical Description

Venturi nozzles are devices composed of a tapered inlet with a rounded profile, a cylindrical throat and a diffusor (outlet cone). The positive measurement is performed through a single bores, the negative measurement is usually carried out through 4 bores that access a ring chamber.

The venturi nozzle is a welded construction consisting either of medium carbon steel or high-quality steel with flanges on both sides. Both, a coating of plastic for the media-contacting surface and a complete construction out of plastic, are possible.

Comparing orifice plates with venturi nozzles the remaining pressure loss for venturi nozzles is about 80% less and the rounded profile is less sensitive than the feather edge of an orifice.

	\	fica	4	
_	TATE		\mathbf{r}	ne

Nominal Pressure

Standard: PN 6 up to PN 100

Nominal Width

Standard: DN 50 up to DN 800

Installation Length (L)

Installation Length L

DN	Type A	Type B	
50	120	170	
65	140	200	
80	160	220	
100	200	270	
125	230	300	
150	260	350	
200	320	400	
250	400	500	
300	450	600	

Bore Diameter

The bore diameter is carefully calculated by the data supplied considering the relevant standards and regulations and is part of the scope of delivery.

Pressure Loss

The remaining pressure loss depends on the opening ratio β =d²/D² and is approx. 10-15% of dP; you will find this information in the calculation data-sheet.

Pressure Taps

One pressure tab at the input and one at the smallest profile. On special requirements more than 2 pressure taps or flushing connections are possible.

Materials

Mild steel RSt37-2 Stainless steels 15Mo3

Carbon steel C22.8, X6CrNiTi1810

Heat resistant steels 16Mo3

Plastics (PP, PVC), 13CrMo45,

Identification

According to DIN 19205 or ANSI on the outer Ø of the tube, additionally with the charge no. and inspector's stamp.

Approvals

Production and check go along with the relevant guidelines such as TRD, "AD-Merkblatt" and customer-specifications. Material certificates according to EN 10204 3.1 A and B.

Special Features

Design A

Pushed-on end-flanges and seal-welded. Application up to max. 300°C. Negative pressure-tapping through a ring-chamber.

Design B

End-flanges pre-welded, transmission test inspection of circumferential weld is possible. Application up to max. 450 °C. Negative pressure-tapping through single bore.

Ordering Information

The ring chamber orifice plate will be optimized to the customer specifications. For a offering we need the following data:

- Flow range(s)
- Gas type(s)
- Orifice nominal width(s)
- Installation length
- Seal type
- Material
- Operating conditions (pressure and temperature)
- Permitted pressure drop
- Accuracy
- Ambient conditions

Material certifications for material testings according to the guidelines of EN 10204 can be delivered on request.

Accessories

Condensate vessels and shut-off valves welded-on or separately.

Phone: +49 (0)7157/5387-0, Fax: +49 (0)7157/5387-10

Email: info@tetratec.de, www.tetratec.de